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Synchronization of Multi-agent System

Dynamic network topology and heterogeneous agents
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Dynamic Network Topology

Synchronization has been studied with time-varying /
switched network with fixed number of agent.

However, there are cases where new agents may join and leave
network during the operation.

In power network:

Local renewable resources join and leave power network.

We study:

Total number of agent is not necessarily fixed.
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Practical Synchronization Problem

Synchronization problem of N agents can be formulated as

ẋi = Fi(xi, t) + ui

where xi ∈ Rn is state, Fi(xi, t) : Rn × R≥0 → Rn are
heterogeneous vector fields, and ui is distributed input (to be
designed).

In particular, we consider input given by

ui = h(ei, θi).

ei: stack of relative difference between xi and its neighbors

θi: design parameter

h(ei, θi): static or dynamic mapping
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Practical Synchronization Problem

Practical Synchronization

Agents achieve practical synchronization if, for given ε > 0, there
exists θi such that

lim sup
t→∞

|xi(t)− xj(t)| ≤ ε

holds for any i, j.

An example of valid coupling law is static diffusive coupling which
is given by

ui = k
∑
j∈Ni

(xj − xi)

where k > 0 is a common coupling gain .
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Review of High Gain Coupling

Recall with static coupling, we have

ẋi = Fi(xi, t) + k
∑
j∈Ni

(xj − xi).

Consider blended dynamics which is defined as

ṡ =
1

N

N∑
i=1

Fi(s, t),

with s(0) = 1
N

∑N
i=1 xi(0).
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Review of High Gain Coupling

Blended dynamics: ṡ = 1
N

∑N
i=1 Fi(s, t).

Theorem [JK16,JL18]

Suppose blended dynamics is contractive∗. Then, for any ε > 0,
there exists k∗ such that for all k ≥ k∗,

lim sup
t→∞

|xi(t)− s(t)| ≤ ε, ∀i ∈ N .

Practical synchronization is achieved.
Trajectories of heterogeneous agents are described by the
blended dynamics.

∗ ẋ = f(x, t) is contractive if there exists positive definite matrix H and constant p > 0 such that

H(∂f/∂x)(x, t) + (∂f/∂x)T (x, t)H ≤ −pH for all x ∈ Rn and t ≥ 0.

[JK16] Kim, Yang, Shim, Kim, Seo, (TAC, 2016)

[JL18] Lee, Shim (Arxiv, 2018)
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Contribution of this work

Challenge

Coupling gain cannot be designed in a completely decentralized
manner.

Previous works:

Completely decentralized design was proposed for
homogeneous case [ZL13,HK17].

In this paper:

Achieve practical synchronization of heterogeneous
multi-agent system using a completely decentralized design.

Propose algorithm to maintain synchronization performance
under dynamic network topology.

[ZL13] Li, Ren, Liu, Fu (TAC, 2013)

[HK17] Kim, Claudio (IJRNC, 2017)
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Main Result: Adaptive Design

Adaptive Design

We propose the input to be

ui = ki(t)
∑
j∈Ni

(xj − xi)

k̇i =
∑
j∈Ni

σγi(e
T
jieji) +

∑
j∈Ni

(kj − ki), ki(0) > 0

where eji := xj − xi and σγi : [0,+∞)→ [0,+∞) is the deadzone
function with threshold γ2i > 0.
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Main Result: Adaptive Design

Consider the dynamics given by

ẋi = Fi(xi, t) + ki(t)
∑
j∈Ni

(xj − xi)

k̇i =
∑
j∈Ni

σγi(e
T
jieji) +

∑
j∈Ni

(kj − ki), ki(0) > 0.

Theorem 1 (Node-wise Performance)

Suppose that |Fi(x,t)| ≤M , ∀x ∈ Rn, t ≥ 0, and the graph is
connected. Then, the solution of the multi-agent system satisfies

lim sup
t→∞

|xi(t)− xj(t)| ≤ γi, ∀j ∈ Ni,

for all i = 1, . . . , N . Moreover, there exists a constant k∗ > 0 such
that limt→∞ ki(t) = k∗ for all i = 1, . . . , N .

14 / 31
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Theorem 1 (Node-wise Performance)

Suppose that |Fi(x,t)| ≤M , ∀x ∈ Rn, t ≥ 0, and the graph is
connected. Then, the solution of the multi-agent system satisfies

lim sup
t→∞

|xi(t)− xj(t)| ≤ γi, ∀j ∈ Ni,

for all i = 1, . . . , N . Moreover, there exists a constant k∗ > 0 such
that limt→∞ ki(t) = k∗ for all i = 1, . . . , N .

Only guarantees “node-wise performance”

Due to symmetry, if i and j are neighbors,

lim sup
t→∞

|xi(t)− xj(t)| ≤ min(γi, γj).
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Main Result: Adaptive Design

Corollory 1 (Worst Case Performance)

Suppose Theorem 1 holds. Then, the multi-agent system achieves
practical synchronization. In particular,

lim sup
t→∞

|xi(t)− xj(t)| ≤ (N − 1) · γ̄

holds for all i, j where γ̄ := maxi∈N γi.

Ensures “global performance”

Worst case performance degrades as N grows.
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Main Result: Algorithm

Consider following system where γ1 = γ2 = 0.5.

1 2

Thus, the initial worst case performance can be obtained as

lim sup
t→∞

|x1(t)− x2(t)| ≤ γ1

= 0.5
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Main Result: Algorithm

Suppose a new node is added to the system with γ3 = 0.1.

1

3

2

Then, the worst case performance becomes

lim sup
t→∞

|x1 − x3| ≤ lim sup
t→∞

|x1 − x2|+ lim sup
t→∞

|x2 − x3|

≤ γ1 + γ3

= 0.6
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Main Result: Algorithm

Let γi’s are updated such that γ2 = γ3 = 0.25 while γ1 = 0.5
stays same.

3

1 2

Then we can recover the worst case performance as

lim sup
t→∞

|x1 − x3| ≤ lim sup
t→∞

|x1 − x2|+ lim sup
t→∞

|x2 − x3|

≤ γ2 + γ2

= 0.5
19 / 31



16/25

Introduction Main Result 1 Main Result 2 Example Conclusion

Main Result: Algorithm

Threshold Update Protocol (TUP)

1. Agent N joins the network. Let its neighbors NN .

2. For all i ∈ NN , let γ̂
[N ]
i := minj∈Ni∪{i},j 6=N (γ

[N−1]
j ).

3. Agent N receives the value of γ̂
[N ]
i for all i ∈ NN .

4. Agent N computes γ∗ := mini∈NN
γ̂
[N ]
i and set γ

[N ]
N = γ∗/2.

5. Agent N sends γ∗ to its neighbors NN .

6. For all i ∈ NN , let γ
[N ]
i = (γ̂

[N ]
i − γ∗/2).

Finally, let γ
[N ]
i = γ

[N−1]
i for all i ∈ {1, . . . , N − 1}\NN .

Theorem 2 (Summarized)

Suppose system with worst case performance of ε > 0. Then the
overall system with TUP maintains the performance.

20 / 31
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Distributed Optimization
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Distributed Solution of Economic Dispatch Problem

Economic dispatch problem (EDP) is:

Network of N nodes, where each node has power generation
(pi) and demand (pdi ).

Find optimal generation for each node to minimize the overall
generation cost.

EDP can be written as

min
pi

∑
aip

2
i + bipi + ci (1a)

subject to pi,min ≤ pi ≤ pi,max (1b)∑
pdi =

∑
pi (1c)

pi,min, pi,max: min/max generation capacity
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Distributed Solution of Economic Dispatch Problem

Using Lagrangian dual functions, it is equivalent to solve [HY18]

max
λ∈R

g(λ),

where λ is dual variable, g(λ) =
∑
gi(λ) and gi(λ) can be

computed locally by an agent.

Maximization problem can be solved by the gradient ascent
method given by

λ̇ = α∇g(λ) = α
N∑
i=1

dgi(λ)

dλ
.

α > 0 is some constant.
Stable if the optimization problem is feasible.
Centralized method

[HY18] Yun, Shim, Ahn (Arxiv, 2018)
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Distributed Solution of Economic Dispatch Problem

We propose the distributed solution given by

λ̇i =
dgi
dλ

(λi) + ki(t)
∑
j∈Ni

(λj − λi)

k̇i =
∑
j∈Ni

σγi

(
e2ji

)
+
∑
j∈Ni

(kj − ki)

where λi is the estimate of λ by agent i and dgi
dλ is uniformly

bounded.

Recalling the high gain coupling, λi(t) will converge to solution of
blended dynamics given by

ṡ =
1

N

N∑
i=1

dgi(s)

dλ
=

1

N
∇g(s)

which is exactly gradient ascent method.
26 / 31
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Simulation Results
Dual Variable λi

𝑁𝑁 = 11 𝑁𝑁 = 12 𝑁𝑁 = 13 𝑁𝑁 = 14
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Simulation Results
Coupling Gains ki

𝑁𝑁 = 11 𝑁𝑁 = 12 𝑁𝑁 = 13 𝑁𝑁 = 14
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Simulation Results
Synchronization Error

𝑁𝑁 = 11 𝑁𝑁 = 12 𝑁𝑁 = 13 𝑁𝑁 = 14
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Conclusion

Decentralized Design

High gain coupling and practical synchronization of
heterogeneous agents

Adaptive design to achieve decentralized design

Usage of deadzone function due to heterogeneity

Synchronization of coupling gains to recover static gain and
blended dynamics

Threshold Update Protocol

Distributed algorithm to maintain worst case performance
under dynamic graph topology

30 / 31



25/25

Introduction Main Result 1 Main Result 2 Example Conclusion

Thank You!
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