Practical Synchronization of Heterogeneous Multi-agent System Using Adaptive Law for Coupling Gains

Seungjoon Lee, Hyeonjun Yun and Hyungbo Shim

Control & Dynamic Systems Lab Seoul National University



June 27<sup>th</sup>, 2018 Milwaukee, ACC 2018

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| ●000000      | 0000          | 0000          | 000000  |            |
|              |               |               |         |            |

## Synchronization of Multi-agent System



Dynamic network topology and heterogeneous agents

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 000000       | 0000          | 0000          | 000000  | 00         |
| Dunamia      | Notwork Topol |               |         |            |

Dynamic Network Topology

- Synchronization has been studied with time-varying / switched network with fixed number of agent.
- However, there are cases where new agents may join and leave network during the operation.
- In power network:
  - Local renewable resources join and leave power network.

We study:

Total number of agent is not necessarily fixed.

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 000000       | 0000          | 0000          | 000000  | 00         |
| Dunamia      | Notwork Topol |               |         |            |

Dynamic Network Topology

- Synchronization has been studied with time-varying / switched network with fixed number of agent.
- However, there are cases where new agents may join and leave network during the operation.
- In power network:
  - Local renewable resources join and leave power network.

We study:

• Total number of agent is not necessarily fixed.

| Introduction | Main Result 1 | Main Result 2 | Conclusion |
|--------------|---------------|---------------|------------|
| 000000       |               |               |            |
|              |               |               |            |

Synchronization problem of  $\boldsymbol{N}$  agents can be formulated as

 $\dot{x}_i = F_i(x_i, t) + u_i$ 

where  $x_i \in \mathbb{R}^n$  is state,  $F_i(x_i, t) : \mathbb{R}^n \times \mathbb{R}_{\geq 0} \to \mathbb{R}^n$  are heterogeneous vector fields, and  $u_i$  is distributed input (to be designed).

In particular, we consider input given by

 $u_i = h(e_i, \theta_i).$ 

•  $e_i$ : stack of relative difference between  $x_i$  and its neighbors

- $\theta_i$ : design parameter
- $h(e_i, \theta_i)$ : static or dynamic mapping

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 000000       |               |               |         |            |
|              |               |               |         |            |

Synchronization problem of  $\boldsymbol{N}$  agents can be formulated as

 $\dot{x}_i = F_i(x_i, t) + u_i$ 

where  $x_i \in \mathbb{R}^n$  is state,  $F_i(x_i, t) : \mathbb{R}^n \times \mathbb{R}_{\geq 0} \to \mathbb{R}^n$  are heterogeneous vector fields, and  $u_i$  is distributed input (to be designed).

In particular, we consider input given by

 $u_i = h(e_i, \theta_i).$ 

- $e_i$ : stack of relative difference between  $x_i$  and its neighbors
- $\theta_i$ : design parameter
- $h(e_i, \theta_i)$ : static or dynamic mapping

|                                 | Introduction | Main Result 1 | Main Result 2 |        | Conclusion |
|---------------------------------|--------------|---------------|---------------|--------|------------|
| <b>000000</b> 0000 0000 0000 00 | 000000       | 0000          | 0000          | 000000 | 00         |

#### Practical Synchronization

Agents achieve practical synchronization if, for given  $\epsilon>0,$  there exists  $\theta_i$  such that

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| \le \epsilon$$

holds for any i, j.

An example of valid coupling law is static diffusive coupling which is given by

$$u_i = k \sum_{j \in \mathcal{N}_i} (x_j - x_i)$$

where k > 0 is a common coupling gain .

| Introduction | Main Result 1 | Main Result 2 |        | Conclusion |
|--------------|---------------|---------------|--------|------------|
| 000000       | 0000          | 0000          | 000000 | 00         |
|              |               |               |        |            |

#### Practical Synchronization

Agents achieve practical synchronization if, for given  $\epsilon>0,$  there exists  $\theta_i$  such that

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| \le \epsilon$$

holds for any i, j.

An example of valid coupling law is static diffusive coupling which is given by

$$u_i = \frac{k}{\sum_{j \in \mathcal{N}_i} (x_j - x_i)}$$

where k > 0 is a common coupling gain .

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | 0000          | 000000  | 00         |
|              |               |               |         |            |

## Review of High Gain Coupling

Recall with static coupling, we have

$$\dot{x}_i = \mathbf{F}_i(x_i, t) + k \sum_{j \in \mathcal{N}_i} (x_j - x_i).$$

Consider blended dynamics which is defined as

$$\dot{s} = \frac{1}{N} \sum_{i=1}^{N} F_i(s, t),$$

with  $s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$ .

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | 0000          | 000000  | 00         |
|              |               |               |         |            |

## Review of High Gain Coupling

Blended dynamics:  $\dot{s} = \frac{1}{N} \sum_{i=1}^{N} F_i(s, t)$ .

#### Theorem [JK16, JL18]

Suppose blended dynamics is contractive<sup>\*</sup>. Then, for any  $\epsilon > 0$ , there exists  $k^*$  such that for all  $k \ge k^*$ ,

$$\limsup_{t \to \infty} |x_i(t) - s(t)| \le \epsilon, \quad \forall i \in \mathcal{N}.$$

- Practical synchronization is achieved.
- Trajectories of heterogeneous agents are described by the blended dynamics.

 $<sup>*\</sup>dot{x} = f(x,t)$  is contractive if there exists positive definite matrix H and constant p > 0 such that  $H(\partial f/\partial x)(x,t) + (\partial f/\partial x)^T(x,t)H \leq -pH$  for all  $x \in \mathbb{R}^n$  and  $t \geq 0$ .

<sup>[</sup>JK16] Kim, Yang, Shim, Kim, Seo, (TAC, 2016)

<sup>[</sup>JL18] Lee, Shim (Arxiv, 2018)

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 000000       |               |               |         |            |
|              |               |               |         |            |

## Contribution of this work

#### Challenge

Coupling gain cannot be designed in a completely decentralized manner.

#### Previous works:

 Completely decentralized design was proposed for homogeneous case [ZL13,HK17].

In this paper:

- Achieve practical synchronization of heterogeneous multi-agent system using a completely decentralized design.
- Propose algorithm to maintain synchronization performance under dynamic network topology.

[ZL13] Li, Ren, Liu, Fu (TAC, 2013) [HK17] Kim, Claudio (IJRNC, 2017)

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 000000       |               |               |         |            |
|              |               |               |         |            |

## Contribution of this work

#### Challenge

Coupling gain cannot be designed in a completely decentralized manner.

#### Previous works:

 Completely decentralized design was proposed for homogeneous case [ZL13,HK17].

In this paper:

- Achieve practical synchronization of heterogeneous multi-agent system using a completely decentralized design.
- Propose algorithm to maintain synchronization performance under dynamic network topology.

[ZL13] Li, Ren, Liu, Fu (TAC, 2013) [HK17] Kim, Claudio (IJRNC, 2017)

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | •000          | 0000          | 000000  | 00         |

#### Adaptive Design

We propose the input to be

$$u_i = k_i(t) \sum_{j \in \mathcal{N}_i} (x_j - x_i)$$
$$\dot{k}_i = \sum_{j \in \mathcal{N}_i} \sigma_{\gamma_i}(e_{ji}^T e_{ji}) + \sum_{j \in \mathcal{N}_i} (k_j - k_i), \quad k_i(0) > 0$$

where  $e_{ji} := x_j - x_i$  and  $\sigma_{\gamma_i} : [0, +\infty) \to [0, +\infty)$  is the deadzone function with threshold  $\gamma_i^2 > 0$ .



| Main Result 1 | Main Result 2 | Example | Conclusion |
|---------------|---------------|---------|------------|
| 0000          |               |         |            |
|               |               |         |            |

Consider the dynamics given by

$$\dot{x}_i = F_i(x_i, t) + k_i(t) \sum_{j \in \mathcal{N}_i} (x_j - x_i)$$
$$\dot{k}_i = \sum_{j \in \mathcal{N}_i} \sigma_{\gamma_i}(e_{ji}^T e_{ji}) + \sum_{j \in \mathcal{N}_i} (k_j - k_i), \quad k_i(0) > 0.$$

#### Theorem 1 (Node-wise Performance)

Suppose that  $|F_i(x,t)| \leq M$ ,  $\forall x \in \mathbb{R}^n$ ,  $t \geq 0$ , and the graph is connected. Then, the solution of the multi-agent system satisfies

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| \le \gamma_i, \quad \forall j \in \mathcal{N}_i,$$

for all i = 1, ..., N. Moreover, there exists a constant  $k^* > 0$  such that  $\lim_{t\to\infty} k_i(t) = k^*$  for all i = 1, ..., N.

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | 0000          | 000000  | 00         |
|              |               |               |         |            |

#### Theorem 1 (Node-wise Performance)

Suppose that  $|F_i(x,t)| \leq M$ ,  $\forall x \in \mathbb{R}^n$ ,  $t \geq 0$ , and the graph is connected. Then, the solution of the multi-agent system satisfies

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| \le \gamma_i, \quad \forall j \in \mathcal{N}_i,$$

for all i = 1, ..., N. Moreover, there exists a constant  $k^* > 0$  such that  $\lim_{t\to\infty} k_i(t) = k^*$  for all i = 1, ..., N.

- Only guarantees "node-wise performance"
- Due to symmetry, if i and j are neighbors,

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| \le \min(\gamma_i, \gamma_j).$$

| Main Result 1 | Main Result 2 | Example | Conclusion |
|---------------|---------------|---------|------------|
| 0000          |               |         |            |
|               |               |         |            |

#### Corollory 1 (Worst Case Performance)

Suppose Theorem 1 holds. Then, the multi-agent system achieves practical synchronization. In particular,

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| \le (N - 1) \cdot \bar{\gamma}$$

holds for all i, j where  $\bar{\gamma} := \max_{i \in \mathcal{N}} \gamma_i$ .

- Ensures "global performance"
- Worst case performance degrades as N grows.

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | ●000          | 000000  |            |
| Main Result: | Algorithm     |               |         |            |

• Consider following system where  $\gamma_1 = \gamma_2 = 0.5$ .

$$\begin{array}{c} 1 & 2 \\ \gamma_1 = 0.5 & \gamma_2 = 0.5 \end{array}$$

Thus, the initial worst case performance can be obtained as

$$\limsup_{t \to \infty} |x_1(t) - x_2(t)| \le \gamma_1$$
$$= 0.5$$

| Main Result 1 | Main Result 2 | Example | Conclusion |
|---------------|---------------|---------|------------|
|               | 0000          |         |            |
|               |               |         |            |

#### Main Result: Algorithm

• Suppose a new node is added to the system with  $\gamma_3 = 0.1$ .



Then, the worst case performance becomes

$$\limsup_{t \to \infty} |x_1 - x_3| \le \limsup_{t \to \infty} |x_1 - x_2| + \limsup_{t \to \infty} |x_2 - x_3|$$
$$\le \gamma_1 + \gamma_3$$
$$= 0.6$$

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | 00●0          | 000000  | 00         |
|              |               |               |         |            |

#### Main Result: Algorithm

• Let  $\gamma_i$ 's are updated such that  $\gamma_2 = \gamma_3 = 0.25$  while  $\gamma_1 = 0.5$  stays same.

$$\begin{array}{ccc}
1 & 2 \\
\gamma_1 = 0.5 & \gamma_2 = 0.25 \\
\end{array}$$

$$\begin{array}{c}
3 \\
\gamma_3 = 0.25
\end{array}$$

Then we can recover the worst case performance as

$$\begin{split} \limsup_{t \to \infty} |x_1 - x_3| &\leq \limsup_{t \to \infty} |x_1 - x_2| + \limsup_{t \to \infty} |x_2 - x_3| \\ &\leq \gamma_2 + \gamma_2 \\ &= 0.5 \end{split}$$

| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | 000●          | 000000  | 00         |
|              |               |               |         |            |

## Main Result: Algorithm

Threshold Update Protocol (TUP)

- 1. Agent N joins the network. Let its neighbors  $\mathcal{N}_N.$
- 2. For all  $i \in \mathcal{N}_N$ , let  $\hat{\gamma}_i^{[N]} := \min_{j \in \mathcal{N}_i \cup \{i\}, j \neq N} (\gamma_j^{[N-1]}).$
- 3. Agent N receives the value of  $\hat{\gamma}_i^{[N]}$  for all  $i \in \mathcal{N}_N$ .
- 4. Agent N computes  $\gamma^* := \min_{i \in \mathcal{N}_N} \hat{\gamma}_i^{[N]}$  and set  $\gamma_N^{[N]} = \gamma^*/2$ .
- 5. Agent N sends  $\gamma^*$  to its neighbors  $\mathcal{N}_N$ .
- 6. For all  $i \in \mathcal{N}_N$ , let  $\gamma_i^{[N]} = (\hat{\gamma}_i^{[N]} \gamma^*/2)$ .
- Finally, let  $\gamma_i^{[N]} = \gamma_i^{[N-1]}$  for all  $i \in \{1, \dots, N-1\} \setminus \mathcal{N}_N$ .

#### Theorem 2 (Summarized)

Suppose system with worst case performance of  $\epsilon > 0$ . Then the overall system with TUP maintains the performance.

## Application of Adaptive Design to Distributed Optimization

|        | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------|---------------|---------------|---------|------------|
| 000000 | 0000          | 0000          | •00000  | 00         |

Economic dispatch problem (EDP) is:

- Network of N nodes, where each node has power generation  $(p_i)$  and demand  $(p_i^d)$ .
- Find optimal generation for each node to minimize the overall generation cost.

EDP can be written as

$$\min_{p_i} \sum a_i p_i^2 + b_i p_i + c_i \tag{1a}$$

subject to 
$$p_{i,\min} \le p_i \le p_{i,\max}$$
 (1b)  
 $\sum p_i^d = \sum p_i$  (1c)

■  $p_{i,\min}$ ,  $p_{i,\max}$ : min/max generation capacity

|        | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------|---------------|---------------|---------|------------|
| 000000 | 0000          | 0000          | •00000  | 00         |

Economic dispatch problem (EDP) is:

- Network of N nodes, where each node has power generation  $(p_i)$  and demand  $(p_i^d)$ .
- Find optimal generation for each node to minimize the overall generation cost.

EDP can be written as

$$\min_{p_i} \sum a_i p_i^2 + b_i p_i + c_i \tag{1a}$$

subject to 
$$p_{i,\min} \le p_i \le p_{i,\max}$$
 (1b)

$$\sum p_i^d = \sum p_i \tag{1c}$$

•  $p_{i,\min}$ ,  $p_{i,\max}$ : min/max generation capacity

|        | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------|---------------|---------------|---------|------------|
| 000000 | 0000          | 0000          | 00000   | 00         |

Using Lagrangian dual functions, it is equivalent to solve [HY18]

 $\max_{\lambda \in \mathbb{R}} g(\lambda),$ 

where  $\lambda$  is dual variable,  $g(\lambda)=\sum g_i(\lambda)$  and  $g_i(\lambda)$  can be computed locally by an agent.

Maximization problem can be solved by the gradient ascent method given by

$$\dot{\lambda} = \alpha \nabla g(\lambda) = \alpha \sum_{i=1}^{N} \frac{dg_i(\lambda)}{d\lambda}.$$

- $\alpha > 0$  is some constant.
- Stable if the optimization problem is feasible.
- Centralized method

|        | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------|---------------|---------------|---------|------------|
| 000000 | 0000          | 0000          | 00000   | 00         |

Using Lagrangian dual functions, it is equivalent to solve [HY18]

 $\max_{\lambda \in \mathbb{R}} g(\lambda),$ 

where  $\lambda$  is dual variable,  $g(\lambda)=\sum g_i(\lambda)$  and  $g_i(\lambda)$  can be computed locally by an agent.

Maximization problem can be solved by the gradient ascent method given by

$$\dot{\lambda} = \alpha \nabla g(\lambda) = \alpha \sum_{i=1}^{N} \frac{dg_i(\lambda)}{d\lambda}.$$

- $\alpha > 0$  is some constant.
- Stable if the optimization problem is feasible.
- Centralized method

| Main Result 1 | Main Result 2 | Example | Conclusion |
|---------------|---------------|---------|------------|
|               |               | 00000   |            |
|               |               |         |            |

We propose the distributed solution given by

$$\dot{\lambda}_{i} = \frac{dg_{i}}{d\lambda}(\lambda_{i}) + k_{i}(t) \sum_{j \in \mathcal{N}_{i}} (\lambda_{j} - \lambda_{i})$$
$$\dot{k}_{i} = \sum_{j \in \mathcal{N}_{i}} \sigma_{\gamma_{i}} \left(e_{ji}^{2}\right) + \sum_{j \in \mathcal{N}_{i}} (k_{j} - k_{i})$$

where  $\lambda_i$  is the estimate of  $\lambda$  by agent i and  $\frac{dg_i}{d\lambda}$  is uniformly bounded.

Recalling the high gain coupling,  $\lambda_i(t)$  will converge to solution of blended dynamics given by

$$\dot{s} = \frac{1}{N} \sum_{i=1}^{N} \frac{dg_i(s)}{d\lambda} = \frac{1}{N} \nabla g(s)$$

which is exactly gradient ascent method.

| Main Result 1 | Main Result 2 | Example | Conclusion |
|---------------|---------------|---------|------------|
|               |               | 000000  |            |
|               |               |         |            |

## Simulation Results

Dual Variable  $\lambda_i$ 



| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
|              |               |               |         |            |

## Simulation Results

Coupling Gains  $k_i$ 



| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | 0000          | 00000●  |            |
|              |               |               |         |            |

## Simulation Results

Synchronization Error



| Introduction | Main Result 1 | Main Result 2 | Example | Conclusion |
|--------------|---------------|---------------|---------|------------|
| 0000000      | 0000          | 0000          | 000000  | ●0         |
|              |               |               |         |            |

## Conclusion

#### Decentralized Design

- High gain coupling and practical synchronization of heterogeneous agents
- Adaptive design to achieve decentralized design
- Usage of deadzone function due to heterogeneity
- Synchronization of coupling gains to recover static gain and blended dynamics

#### Threshold Update Protocol

 Distributed algorithm to maintain worst case performance under dynamic graph topology

|         | Main Result 1 | Main Result 2 | Example | Conclusion |
|---------|---------------|---------------|---------|------------|
| 0000000 | 0000          | 0000          | 000000  | 00         |

# Thank You!