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Synchronization of Multi-agent System

m Dynamic network topology and heterogeneous agents
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Dynamic Network Topology

m Synchronization has been studied with time-varying /
switched network with fixed number of agent.

m However, there are cases where new agents may join and leave
network during the operation.
In power network:

m Local renewable resources join and leave power network.
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Dynamic Network Topology

m Synchronization has been studied with time-varying /
switched network with fixed number of agent.

m However, there are cases where new agents may join and leave
network during the operation.
In power network:

m Local renewable resources join and leave power network.

We study:

m Total number of agent is not necessarily fixed.
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Practical Synchronization Problem

Synchronization problem of N agents can be formulated as
& = Fi(wi, ) +u

where x; € R" is state, Fj(x;,t) : R” x R>g — R" are
heterogeneous vector fields, and wu; is distributed input (to be
designed).
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Practical Synchronization Problem

Synchronization problem of N agents can be formulated as
& = Fi(wi, ) +u
where x; € R" is state, Fj(x;,t) : R” x R>g — R" are

heterogeneous vector fields, and wu; is distributed input (to be
designed).

In particular, we consider input given by
U; = h(ei, 91)

m ¢;: stack of relative difference between x; and its neighbors
m 0;: design parameter

m h(e;, 0;): static or dynamic mapping
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Practical Synchronization Problem

Practical Synchronization

Agents achieve practical synchronization if, for given € > 0, there
exists 6; such that

limsup |z;(t) — z;(t)| < e

t—o00

holds for any 4, j.
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Practical Synchronization Problem

Practical Synchronization

Agents achieve practical synchronization if, for given € > 0, there
exists 6; such that

limsup |z;(t) — z;(t)| < e

t—o00

holds for any 4, j.

An example of valid coupling law is static diffusive coupling which
is given by

Ui:kZ(xj_xi)

JEN;

where k > 0 is a common coupling gain .
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Review of High Gain Coupling

Recall with static coupling, we have

iz‘ = Fz‘(l’i,t) + k Z (l’j — IL‘Z)
JEN;

Consider blended dynamics which is defined as
| N
S= ;Fi(s,t),
1=

with s(0) = & SN 2i(0).
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Review of High Gain Coupling

Blended dynamics: § = & S| Fi(s,t).

Theorem [JK16,JL18]

Suppose blended dynamics is contractive®*. Then, for any € > 0,
there exists k* such that for all & > k™,

limsup |z;(t) — s(t)| <€, VieN.

t—00

m Practical synchronization is achieved.
m Trajectories of heterogeneous agents are described by the
blended dynamics.

* & = f(x,t) is contractive if there exists positive definite matrix H and constant p > 0 such that
H(0f/0x)(x,t) + (8f/0x)T (z,t)H < —pH forall z € R™ and t > 0.

[JK16] Kim, Yang, Shim, Kim, Seo, (TAC, 2016)

[JL18] Lee, Shim (Arxiv, 2018)
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Contribution of this work

Challenge

Coupling gain cannot be designed in a completely decentralized
manner.

[ZL13] Li, Ren, Liu, Fu (TAC, 2013)
[HK17] Kim, Claudio (IJRNC, 2017)
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Contribution of this work

Challenge

Coupling gain cannot be designed in a completely decentralized
manner.
Previous works:

m Completely decentralized design was proposed for
homogeneous case [ZL13,HK17].

In this paper:
m Achieve practical synchronization of heterogeneous
multi-agent system using a completely decentralized design.

m Propose algorithm to maintain synchronization performance
under dynamic network topology.

[ZL13] Li, Ren, Liu, Fu (TAC, 2013)
[HK17] Kim, Claudio (IJRNC, 2017)
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Main Result: Adaptive Design

Adaptive Design

We propose the input to be

U; = /{@(t) Z (:I?j — l‘l)
JEN;
ki =Y oylehej) + > (ki — ki), ki(0) >0

JEN; JEN;

where ej; := z; — x; and o, : [0, +00) — [0, +00) is the deadzone
function with threshold 7 > 0.

oy;(a)
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Main Result: Adaptive Design

Consider the dynamics given by

.’ti = Fl(fﬁl, t) + k‘z(t) Z (.’L’j — $1)

JEN;
ki = D on(egiess) + D (ks — ki), ki(0) > 0.
JEN; JEN;

Theorem 1 (Node-wise Performance)
Suppose that |Fj(z t)| < M, Vz € R", t > 0, and the graph is

connected. Then, the solution of the multi-agent system satisfies

limsup [z;(t) — z;(t)] < v, Vi€EN,

t—o00

forall i =1,..., N. Moreover, there exists a constant £* > 0 such
that limy_,o ki(¢) = k* forall i =1,..., N.
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Main Result: Adaptive Design

Theorem 1 (Node-wise Performance)
Suppose that |Fi(z t)| < M, Vz € R", t > 0, and the graph is

connected. Then, the solution of the multi-agent system satisfies

limsup |z;(t) — z;(t)| < v, VjeEM,,

t—o0
forall i =1,..., N. Moreover, there exists a constant £* > 0 such
that limy_,o k;i(t) = k* foralli =1,..., N.

m Only guarantees “node-wise performance”

m Due to symmetry, if ¢ and j are neighbors,

limsup |z;(t) — x;(¢)| < min(y;, 75)-

t—o00
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Main Result: Adaptive Design

Corollory 1 (Worst Case Performance)

Suppose Theorem 1 holds. Then, the multi-agent system achieves
practical synchronization. In particular,

limsup |2;(t) —z;(¢)] < (N =1) -7

t—00

holds for all 4, j where 4 := max;cn ;.

m Ensures “global performance”

m Worst case performance degrades as N grows.
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Main Result: Algorithm

m Consider following system where v; = v2 = 0.5.

1 2

Y1 = 0.5 Y2 = 0.5

m Thus, the initial worst case performance can be obtained as

limsup |z1(t) — z2(t)] <7

t—o00
=0.5
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Main Result: Algorithm

m Suppose a new node is added to the system with v3 = 0.1.

1 2

v =05 v2 =05

m Then, the worst case performance becomes

limsup |z1 — 3] < limsup |x] — 22| + limsup |z — x3
t—o0 t—o0 t—o0

<7 +3
=0.6
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Main Result: Algorithm

m Let ;'s are updated such that v = ~3 = 0.25 while 1 = 0.5
stays same.

Y3 = 0.25

m Then we can recover the worst case performance as

limsup |z — 23| < hmsup |x1 — 22| + hmsup |z — x3
t—00 t— t—

<72+
=0.5
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Main Result: Algorithm

Threshold Update Protocol (TUP)
1. Agent N joins the network. Let its neighbors Ny.

. Forall ¢ GNN, let ’y[ ] = mln]ENU{l},j#N(’V} _1]).

5 [NV]

2

3. Agent N receives the value of 7[ I for all i € Ny.
4. Agent N computes v* := min;enr, 9; ~ and set 'y[ =v*/2.
5

. Agent N sends ~* to its nelghbors Ny.

6. For all i € Ny, let 7[ I = (71[ —~*/2).

Finally, let 7-[ [ ’yz[ “for all i € {1,...,N —1}\Ny.

2

Theorem 2 (Summarized)

Suppose system with worst case performance of € > 0. Then the
overall system with TUP maintains the performance.



Application of Adaptive Design to

Distributed Optimization
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Distributed Solution of Economic Dispatch Problem

Economic dispatch problem (EDP) is:

m Network of N nodes, where each node has power generation
(pi) and demand (p).

m Find optimal generation for each node to minimize the overall
generation cost.
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Distributed Solution of Economic Dispatch Problem

Economic dispatch problem (EDP) is:

m Network of N nodes, where each node has power generation
(pi) and demand (p).

m Find optimal generation for each node to minimize the overall
generation cost.

EDP can be written as
HEH Z aip; + bipi + ¢; (1a)
subject to  Pimin < Pi < Dimax (1b)

dori=>p (Lc)

B Dimin, Pi,max: Min/max generation capacity
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Distributed Solution of Economic Dispatch Problem

Using Lagrangian dual functions, it is equivalent to solve [HY18]

A
glgﬁcg( ),

where X is dual variable, g(A\) = > gi(\) and g;(\) can be
computed locally by an agent.

[HY18] Yun, Shim, Ahn (Arxiv, 2018)
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Distributed Solution of Economic Dispatch Problem

Using Lagrangian dual functions, it is equivalent to solve [HY18]

A
glgﬁcg( )s

where X is dual variable, g(A\) = > gi(\) and g;(\) can be
computed locally by an agent.

Maximization problem can be solved by the gradient ascent
method given by

A =aVg(A —azd‘q’ )

m « > 0 is some constant.
m Stable if the optimization problem is feasible.
m Centralized method

[HY18] Yun, Shim, Ahn (Arxiv, 2018)
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Distributed Solution of Economic Dispatch Problem

We propose the distributed solution given by

. dg;
N NCOREIOD DICTEPY

JEN;
ki= oy (631) + D (k= ki)
JjeN; JEN;

where )\; is the estimate of A by agent ¢ and ‘fff\i is uniformly
bounded.

Recalling the high gain coupling, A;(¢) will converge to solution of
blended dynamics given by

~ Z doils) _ ~Vo(s)

which is exactly gradient ascent method.
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Simulation Results
Dual Variable )\;

Trajectories of \;

-2 ---Optlimal Solution‘
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Simulation Results
Coupling Gains k;

Trajectories of k;
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Simulation Results

Synchronization Error

Example
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Trajectories of Synchronization Error

150

200



Conclusion
®0

Conclusion

Decentralized Design

m High gain coupling and practical synchronization of
heterogeneous agents

m Adaptive design to achieve decentralized design
m Usage of deadzone function due to heterogeneity

m Synchronization of coupling gains to recover static gain and
blended dynamics

Threshold Update Protocol

m Distributed algorithm to maintain worst case performance
under dynamic graph topology
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